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APPLICATIONIN LATTICE STRUCTURE 
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ABSTRACT 
The modularity of a graph is a parameter that measures its structure.In this article we have construct a new 
structure 4 regular planar graph G(2s+6, 3s+t). An application has been focused on lattice structure of 
different crystal structure. 
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INTRODUCTION 
A graph embedded in the sphere without edge crossings is a planar graph. We do not distinguish an outer face. 
On account of Euler’s formula, a simple planar graph has average degree less than 6, and therefore a regular 
simple planar graph can have degree at most 5. However, although much is known about the structure of 3-
regular and 4-regular simple planar graphs, little is known about the 5-regular case. Similarly, there is a large 
literature on planar graphs with every face of size 3 (that is, each face bounded by 3 edges), or every face of size 
4, but very little for every face of size 5. The latter are planar pentangulations. Various researcher are working 
on Regular planar graph.  Hasheminezhad Mahdieh et al  [1] have been described that the 5-regular simple 
planar graphs can all be obtained from an elementary family of starting graphs by repeatedly applying a few 
local expansion operations. The proof uses an amalgam of theory and computation. By incorporating the 
recursion into the canonical construction path method of isomorph rejection, a generator of non-isomorphic 
embedded 5-regular planar graphs is obtained with time complexity O(n 2 ) per isomorphism class. A similar 
result is obtained for simple planar pentangulations with minimum degree 2.  Gardemann Thomas et al [2]have 
beenconstructa new families of integral graphs by considering complete products, unions and point 
identifications of complete graphs and complete bipartite graphs. They also find a relation between arithmetic 
series and the integrality of complete products. Exoo Geoffrey et al[3] have been investigate the properties of 
the resulting graphs in the context of cages and construct families of small graphs using geometric graphs, Paley 
graphs, and techniques from the theory of Cayley maps. Bekos  A Michael[4] has been proposed that 
affirmatively answer Lov´asz’s conjecture, if G is 3-connected, and demonstrate an infinite class of connected 
4-regular planar graphs which are not 3-connected and do not admit a realization as a system of circles.Yangyan 
Gu et al [5] have been proved that every 𝑛n-vertex planar graph has a 3-degenerate induced subgraph of order at 
least 3𝑛⁄43n⁄4.Islam at al [6 ] have been proposed the construction of a structure of the 4-regular planar graphs 
for G(2m+2,4m+4) where m≥2. They have define two theorems on odd regions and total regions of 4-regular 
planar graphs and also prove it. Finally an application is given in region base map coloring and GSM network 
coloring. Islam et al[7] have been discuss about of a new cluster graph G(2n+6, 3n+m). They find minimum 
vertex cover of the graph G(2n+6, 3n+m). In addition to this, they also deloved an algorithm to find out 
minimum vertex cover of any graph. Finally an application of minimum vertex cover has been focused on 
sensor network.Vijaya M et al[8]  have been  introduced picture fuzzy soft graph, lower and upper truncation of 
picture fuzzy soft graph. They also studied truncation of subdivision picture fuzzy soft graph and truncation of 
strong picture fuzzy soft graph. 

OUR WORK- 
Theoretical Investigation- 

In this article we have consider a graph G(V,E)=G(2s+6, 3s+t). Here V=2s+6 is the set of vertices and E=3s+t is 
the set of edges and s and t are the arbitrary values. Recently, Islam and Haloi [7] introduced a new cluster 
graph G(2s+6, 3s+t) and find minimum vertex cover of the graph G(2x+6, 3x+y).They also developed an 
algorithm, theorem an application of minimum vertex cover. 

In this article we have construct a new cluster 4 –regular planar graph according the incremented values of s and 
t in the following way- 
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Construction of 4-Regular Planar Graph: 
Let G be a graph having (2s+6) vertices and (3s+t) edges for s=1,and t=13, G contains eight vertices {v1, v2, v3, 
v4, v5, v6, v7, v8} and 16 edges. Let us join these eight vertices by 16 edges to construct 4 Regular Planar graph. ∝ (𝑣i ) = 𝑣𝑖+1 𝑓𝑜𝑟  1≤ 𝑖 ≤ 7 𝑣i-3  i=4 𝑣i-3  i=8 ∝ (𝑣i) = 𝑣𝑖+4  1≤ 𝑖 ≤ 4 ∝ (𝑣i) = 𝑣𝑖+5  2≤ 𝑖 ≤2 

v1for i=3 

v8for i=6 

 

Then we have the edge set {v1 v2, v2 v3, v3,v4,v4 v1,v5 v6,v6v7, v7 v8 ,v8 v5,v1v5,v2v6,v3 v7,v4v8,v2v5,v1 v3,v4v7,v8v6} 
and we obtain a graph [ Figure-1], which is planar and regular of degree four. 

 
Figure- 4 Regular planar graph 

Now for s=2 and t=14 then the graph G contains 10 vertices {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10} and 20 edges. 
Let us join these 10 vertices by 20 edges to construct 4 Regular Planar graph. ∝ (𝑣I ) = 𝑣𝑖+1 𝑓𝑜𝑟  1≤ 𝑖 ≤ 9 

=        𝑣i-4  i=5 𝑣i-4  i=10 ∝ (𝑣i) = 𝑣𝑖+5  1≤ 𝑖 ≤ 5 ∝ (𝑣i) =        𝑣𝑖+6  2≤ 𝑖 ≤ 4, i≠3 

v1for i=3 ∝ (𝑣i) =        v9for i=7 

 

Then we have the edge set {v1 v2, v2 v3, v3,v4,v4 v5,v5 v1, v6v7, v7v8, v8 v9 ,v9 v10,v10 v6, v1v6, v2v7,v3 v8, v4v9, 
v5v10, v2v6,v1 v3, v4v8,v5v9,v7v10} and we obtain a graph [ Figure-2], which is planar and regular of degree four. 
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Figure-2- 4-regular planar graph. 

For the graph G having 2s+6 number of vertices and 3s+t number of edges for s≥1 and t ≥13, we define ∝: 
VG→VG such that ∝ ( ) =  𝑣𝑖+1 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 2s+5 𝑣1𝑓𝑜𝑟V3 ∝ (𝑣𝑖) = 𝑣s+3+i𝑓𝑜𝑟 1 ≤ 𝑖 ≤ s+3 ∝ ( ) = 𝑣 s+4+i𝑓𝑜𝑟 2 ≤ 𝑖 ≤ s+1,i≠3 ∝ ( ) = 𝑣 s+4+i𝑓𝑜𝑟 4 ≤ 𝑖 ≤ s+2, s≥2 ∝ (𝑣1 ) = 𝑣 i+3𝑓𝑜𝑟 i=s ∝ (𝑣𝑖 ) = 𝑣 i+s+2 when i=5,s=1 and s=2,i=6  i.e alternative increment of s and i value. ∝ ( ) = 𝑣 i+2𝑓𝑜𝑟 i=s+5 

From the above generalize formulae we can construct the above structure 4-Regular Planar Graph for the graph 
G (V, E) =G (2s+6, 3s+t). The generalize formulae also construct a planar graph which satisfy the planarity 
condition i.e e < 3n-6, where e= no of edges contain by the graph and n= no of vertices contain by the graph. 

APPLICATION 
On a finite set of a combinatorial objects, distributive lattices are attractive and well understood structures and it 
is always nice to identify a distributive lattice. As an example we take a crystal structure as in fig-3. 

 
Figure-3- Crystal structure 

A lattice is a series of points that are arranged in a distinct pattern. A crystal lattice structure is like to a lattice, 
but instead of points, it is composed of a series of atoms. A crystal lattice is typically arranged in some sort of 
symmetrical geometric shape, with each vertex representing an atom. 

Many solids possess a lattice structure because the total intermolecular energy is lowest when the atoms are 
arranged in these types of geometrical shapes. 

There are many different types of lattice formations that a crystal structure can have, including: 

 Face-centered cubic is a common lattice structure for copper, silver, platinum, nickel and aluminum. 

 Body-centered cubic is a common lattice structure for tantalum, iron, chromium and molybdenum. 

 Hexagonal close-packed lattice structures can be found in magnesium, cobalt, zinc and titanium. 

 Tetragonal lattice structure is found in some types of steel. 

Steel is a material that can have many different types of crystal lattice structures. In some forms at room 
temperature, it has a body-centered cubic composition. When it is heated to a certain temperature, its crystal 
structure turns into a face-centered cubic form. If it is cooled rapidly from a heated state and if it has a high 
amount of carbon in its chemical composition then it will have a body-centered tetragonal crystal lattice 
structure. 

If we represent the above crystal structure as unit cell and lattice structure, the structure will be 4 –regular 
planar graph which represent in Fig- 4 
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Figure-4 – Lattice structure and unit cell structure of the crystal. 

Through the graph structure of the graph G (V, E) =G (2s+6, 3s+t) we can construct 4 regular planar graph 
which is resembles with the above crystal structure. In the graph atoms are represented as vertices and 
connections of atoms are represented as edges. In the fig-4 we have seen that the end vertices degree are 
connected with three edges and on edge is hidden connected. So the end vertices degree simple look like three 
degree.The graph structure of Fig-2 and Fig -3 use as crystal structure of different crystal as well as also use as 
lattice structure. There are lot of lattice structure like salt, Schnyder woods which resembles in our graph 
structure which represents a 4 regular planar graph. Therefore the graph structures which is constructed by the 
above generalize formulae we can represent as different crystal lattice structure. 

CONCLUSION 
This paper is proposes a manual assisting method to extract knowledge to construct the 4 regular planar graph. 
From the above generalize formulae one can construct the 4 regular planar graph G (V, E) =G (2s+6, 3s+t) 
where s≥1 and t ≥13. The graph structure can resembles with the crystal structure as well as also resembles with 
the lattice structure of crystal. 
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